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The continental shelves are the most biologically dynamic regions of
the ocean, and they are extensive worldwide, especially in the
western North Pacific. Their area has varied dramatically over the
glacial/interglacial cycles of the last million years, but the effects of
this variation on ocean biological and chemical processes remain
poorly understood. Conversion of nitrate to N2 by denitrification in
sediments accounts for half or more of the removal of biologically
available nitrogen (“fixed N”) from the ocean. The emergence of
continental shelves during ice ages and their flooding during
interglacials have been hypothesized to drive changes in sedi-
mentary denitrification. Denitrification leads to the occurrence of
phosphorus-bearing, N-depleted surface waters, which encourages
N2 fixation, the dominant N input to the ocean. An 860,000-y record
of foraminifera shell-bound N isotopes from the South China Sea
indicates that N2 fixation covaried with sea level. The N2 fixation
changes are best explained as a response to changes in regional
excess phosphorus supply due to sea level-driven variations in shal-
low sediment denitrification associated with the cyclic drowning
and emergence of the continental shelves. This hypothesis is consis-
tent with a glacial ocean that hosted globally lower rates of fixed N
input and loss and a longer residence time for oceanic fixed N—a
“sluggish” ocean N budget during ice ages. In addition, this work
provides a clear sign of sea level-driven glacial/interglacial oscilla-
tions in biogeochemical fluxes at and near the ocean margins, with
implications for coastal organisms and ecosystems.
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Biological productivity in much of the ocean is limited by the
supply of biologically available nitrogen (“fixed N”) (1). Bi-

ological processes are central to the input and output of fixed N
to and from the ocean: N2 fixation by cyanobacteria in surface
waters appears to dominate the input of N to the ocean, whereas
the main sink is biological reduction to N2 (generalized here as
“denitrification”) in sediments and in suboxic zones of the water
column (2). Given this biologically determined input/output
budget, the variation or constancy of the oceanic fixed N reser-
voir has broader implications for the potential of ocean life to
regulate environmental conditions on a global scale. Because the
“major nutrients” N and phosphorus (P) fuel the biological se-
questration of CO2 in the deep ocean, changes in the oceanic
fixed N reservoir have also been proposed as a driver of glacial/
interglacial CO2 change (3, 4).
Sediment records show N isotopic evidence of reduced water

column denitrification during the Last Glacial Maximum (LGM)
and other cold phases of the glacial cycles relative to the current
interglacial (the “Holocene”) and past warm time intervals (5, 6).
“Benthic” denitrification (that which occurs in seafloor sedi-
ments) is equally as or more important than water column de-
nitrification in the removal of N from the global ocean, and it has
been hypothesized to decrease during glacials (times of high land

ice volume) as well (7). This hypothesis is based on the generally
rapid rate of denitrification in continental shelf sediments and on
calculations that indicate the importance of shelf denitrification in
the global ocean rate of denitrification (8). The continental
shelves are characterized by high fluxes of organic matter to the
sediments both because their shallow depth allows sinking matter
to reach the bottom quickly and because the breakdown of organic
matter in the shallow sediments returns nutrients immediately to
the sunlit upper ocean. As a result, the nutrients supplied to the
waters overlying the continental shelf drive multiple rapid cycles of
productivity, sedimentation, and remineralization over its broad
extent of shallow seafloor. During glacial maxima, the ∼120-m
decline in sea level converted the continental shelves into coastal
land, removing much of this environment as a site of oceanic N
loss. The greater mean depth and steepness of the seaward con-
tinental slope should render the slope far less efficient at returning
the nutrients released from the sediments to the upper ocean.
Thus, upon sea level lowering, the coastal environment would be
less favorable as an environment for both coastal productivity and
benthic N loss. However, because the direct impact of benthic N
loss on the N isotopes is typically nil or very weak (9, 10), there
have been, as yet, no direct tests of this hypothesis.
Since the first studies of the ocean N budget, it has been rec-

ognized that a balance is required between inputs (dominantly N2
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fixation) and losses (dominantly denitrification) on the timescale
of the residence time of fixed N in the ocean [currently ∼3,000 y
(2)], such that changes in N2 fixation should be coupled to, and
thus provide evidence of, changes in denitrification. It has been
argued that denitrification generates a selective advantage to N2
fixers by increasing the occurrence of phosphorus-bearing, N-
depleted surface waters (i.e., excess phosphorus) (11). The resulting
N2 fixation response may thus yield spatial and temporal coupling
between denitrification and N2 fixation that balances the ocean’s
N budget, for which there are multiple lines of evidence (12–14).
However, it has been pointed out that N2 fixers have other sensi-
tivities as well. In particular, both iron availability and temperature
may be important constraints on N2 fixation (3, 15).
The South China Sea (SCS) repeats end of paragraph is a

marginal sea characterized by a high ratio of shelf area to basin
area (∼1.2). Deep SCS water has oceanographic characteristics
similar to the western Pacific open ocean (16), with continuous
exchange with the open western Pacific mainly through the
Luzon Strait, which is ∼2,200 m deep, too deep for the exchange
of thermocline and deeper water masses to have been affected by
glacial/interglacial sea level change. The warm tropical surface
waters of the SCS and the adjacent Asian dust sources and ocean
margins appear to leave N2 fixation unconstrained by tempera-
ture or iron (17). The extensive East Asian and Sunda shelves
host rapid sedimentary denitrification (8), which effectively
removes fixed N and lowers the fixed nitrogen-to-phosphorus
ratio (N/P) of the shallow water column in the region. These
features suggest that the SCS may be prone to coupling between
benthic denitrification and N2 fixation.
The nitrogen isotopes can be used to reconstruct past changes in

N2 fixation in environments where the nitrogen isotopic signature

of N2 fixation can be clearly observed in the thermocline. N2 fix-
ation introduces N with a δ15N of ∼−1‰ versus atmospheric N2
(18), which is distinctly lower than the δ15N of oceanic nitrate (Fig.
1B). Mean ocean nitrate δ15N is elevated above that of the newly
fixed N (9) because water column denitrification removes nitrate
(NO3

−) that is depleted in 15N (19). As a result, the reminerali-
zation of newly fixed N to nitrate causes regional lowering of ni-
trate δ15N underneath the surface waters in which N2 fixation
occurs. This lowering is most intense in the shallow thermocline for
two reasons. First, organic N is remineralized rapidly as it sinks,
causing most of the sinking N and its isotopic signal of N2 fixation
to be emplaced at shallow depths. Second, nitrate concentration
decreases upward across the thermocline, helping the nitrate that
derives from local or regional N2 fixation to represent a greater
proportion of the total nitrate in the water. The lowering of nitrate
δ15N by N2 fixation is perhaps most obvious today in the tropical
and subtropical North Atlantic (20). However, a nitrate δ15N
minimum in the shallow thermocline is also observed in the North
Pacific (21), including the SCS (22) (Fig. 1C).
The upward decline in nitrate δ15N in the SCS thermocline is

not observed everywhere in the tropical and subtropical North
Pacific; for example, it is not observed in the equatorial or sub-
arctic North Pacific (23, 24). Thus, it must be a reflection of N2
fixation occurring in the western tropical/subtropical North
Pacific. The shallow thermocline (i.e., the depth range of 100 m
to 200 m) of the modern SCS has a much higher nitrate con-
centration (10 μM to 15 μM) than the same water depth or
density level in the open subtropical North Pacific (<5 μM; Fig.
1B and Fig. S1). As a result, lateral exchange of the upper 200 m
of the water column with the open western North Pacific has
minimal capacity to change the δ15N of nitrate in this depth
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Fig. 1. Core location and modern context for this study. (A) Topographic map showing the change in basin configuration around the SCS between in-
terglacial sea level high stand and full glacial sea level low stand, assuming a 120-m lowering of the shore line on modern topography (63) (black contour;
modern land area shown in gray). The locations of the coring site for core MD97-2142, the SEATS, and the hydrographic transect in the open western Pacific
are shown with a star, triangle, and line, respectively. Colors depict model-simulated benthic denitrification rate (millimoles of N per square meter per day)
(8). The 120-m ice age sea level lowering exposes almost all of the shallow shelf where benthic denitrification is rapid in the present day. (B and C) The depth
profiles of the concentration and δ15N of nitrate plus nitrite in the upper 500 m at SEATS. The samples are collected from four cruises from 2012 summer to
2013 winter (indicated with different colors and symbols). The error bar at each depth indicates 1 SD associated with water collections from multiple casts
during each cruise. The depth profile of the nitrate plus nitrite concentration in the open western Pacific is also shown for comparison (black squares). The
remineralization of newly fixed N is taken as the dominant contributor to the subsurface nitrate δ15N minimum and also lowers the nitrate δ15N throughout
the water column (22). The FB-δ15N of both G. ruber and O. universa measured at the surface sediment are 4.9‰ (black arrow), similar to the δ15N of the
shallow thermocline nitrate being supplied to the photic zone.
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range of the SCS. Therefore, the upward decline in nitrate δ15N
observed in the SCS thermocline (Fig. 1C) is probably mostly
generated within the SCS.
Nitrate from the shallow thermocline supplied by vertical mixing

is the dominant N source to the tropical and subtropical surface
ocean on an annual basis (25). Thus, the δ15N of the shallow
thermocline nitrate is the dominant control on the δ15N of net
biomass production in the surface ocean each year, which, in turn,
sets the δ15N of the various species of planktonic foraminifera, the
shells of which can be analyzed for the δ15N of their fossil-bound
organic N (26). As a consequence, foraminifera-bound N has a
lower δ15N in the modern SCS than in, for example, most of the
equatorial Pacific (Fig. 2). Moreover, a higher rate of N2 fixation in
the SCS would cause a further decline in foraminifera-bound δ15N
(FB-δ15N), whereas slower N2 fixation would cause a δ15N rise.

Results and Discussion
Here we report a record of FB-δ15N in the SCS over the last
860 ky, covering eight major glacial cycles (Methods). The sedi-
ment core is from site MD97-2142 on the slope off Palawan
Island (Fig. 1A, 12°41′N, 119°27′E, water depth of 1,557 m,
sedimentation rate of 10 cm/ky, age model shown in Fig. S2).
The full record uses a single planktonic species, Orbulina uni-
versa. To test the generality of the O. universa FB-δ15N record,
the FB-δ15N of Globigerinoides ruber was also analyzed over the
last glacial cycle (back to ∼125 ka). FB-δ15N is expected to be
similar for these two euphotic zone-dwelling species (26), and
the data fit this expectation (Figs. 2 and 3). Slightly lower δ15N is

observed for G. ruber than for O. universa during the last ice age,
with an average offset of 0.39‰ for 20 ka to 60 ka compared with
0.25‰ for the entire overlapping period (Fig. 2). The same sense
of divergence (with the δ15N of O. universa greater than that of
G. ruber) is also observed in LGM samples from the Caribbean
Sea (13), where it was tentatively interpreted to provide sec-
ondary support of the idea of reduced N2 fixation during the
LGM (13); a similar explanation may apply in the SCS. In any
case, the changes in interspecies FB-δ15N difference are minor
relative to the FB-δ15N changes shared by the two species.
The FB-δ15N records have no clear correspondence with the

bulk sediment records from the SCS, which do not show sys-
tematic glacial/interglacial changes (Fig. 2). Several of the ex-
isting bulk sediment records from the SCS are substantially
dissimilar from one another (Fig. 2A) (27). Moreover, although
foraminifera-bound N content is low and stable over glacial cy-
cles, bulk sediment N content varies substantially over time and
across records (Fig. 2B). Similar observations regarding SCS bulk
sedimentary N records have previously been attributed to dia-
genesis and to multiple sources of N to the bulk sediment (28).
Variation in terrigenous input at our study site has been docu-
mented to be associated with sea level change over the glacial
cycles, for example, with higher concentrations of n-alkanes co-
inciding with lower sea level (29). A general disconnect between
FB-δ15N and bulk sediment δ15N has been observed in the
Caribbean Sea as well, where sedimentological data also point to
terrestrial/shelf N inputs to the bulk sediments, especially in
glacial intervals (13, 14). These findings argue against the utility
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Ren et al. PNAS Early Edition | 3 of 8

EA
RT

H
,A

TM
O
SP

H
ER

IC
,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S
PN

A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=SF9


of bulk sediment δ15N records for reconstructing the δ15N of
export production in marine environments such as the SCS and
Caribbean Sea, where terrestrial and shelf inputs are significant,
export production is modest, and sedimentary organic matter
preservation is not exceptionally high.
The FB-δ15N record from MD97-2142 indicates an increase in

the δ15N of subsurface nitrate of the SCS during the glacials (Fig. 3).
Throughout the ocean, the δ15N of subsurface nitrate is affected by
lateral communication with other regions. Accordingly, one might
propose that Pacific-wide processes raised the δ15N of the nitrate in
the SCS by ∼3‰ during glacials. This might be driven by a whole
ocean nitrate δ15N rise. Alternatively, it might be driven by a change
in the rate of circulation in and out of the SCS and/or a change in
N-cycle processes outside the SCS.
With regard to changes in lateral circulation, as described above,

there is no clear mechanism by which communication with open
western North Pacific waters shallower than ∼200 m could have a
strong influence on SCS nitrate δ15N. Accordingly, this scenario
must involve waters deeper than ∼200 m. However, modern oceanic
nitrate isotope data do not indicate that a change in lateral circu-
lation by itself would significantly change intermediate-depth nitrate
δ15N in the SCS. For the western expanse of subtropical, subpolar,
and tropical Pacific, even when including the western equatorial
Pacific and existing measurements from the central South Pacific,
the δ15N of nitrate in intermediate-depth waters falls between
5.5‰ and 7.0‰, with most measurements in a still narrower range
(23, 24, 30–35). Intermediate-depth nitrate in the modern SCS falls
squarely in this range (Fig. 1 and Fig. S1), in part because of the
rapid lateral exchange of the SCS with the neighboring open
western North Pacific through the Luzon Strait. If this weak vari-
ation in intermediate-depth nitrate δ15N also applied in the past,
even major changes in the circulation of intermediate or mode
waters would have had only modest effects on the δ15N of the ni-
trate imported into the SCS.
We next consider the possibility of global and/or Pacific-wide

changes in nitrate δ15N that are communicated into the SCS. To
compare with our record, we generated a 120-ky FB-δ15N record
using Globigerinoides sacculifer from western tropical North Pacific
([Ocean Drilling Program (ODP) 807]. This new record as well as
paired LGM and Holocene FB-δ15N data from the central equa-
torial Pacific (36) show only small δ15N differences between the
LGM and the Holocene (Fig. 2). Bulk sediment records from the
eastern Pacific show the opposite sense of δ15N change compared
with that in the SCS (Fig. 4) (5, 37, 38). These and other records
from across the global ocean argue against the possibility that the
elevated FB-δ15N observed in the SCS during the LGM reflects a
change in the δ15N of subsurface nitrate imported laterally from
the open Pacific.
One might hypothesize greater vertical mixing in the SCS

during ice ages, which might weaken the δ15N decline upward
through the SCS thermocline, thus increasing the δ15N of the
nitrate supply to the euphotic zone. However, this mechanism
would predict simultaneous changes in productivity and FB-δ15N
in the oligotrophic SCS, and yet the productivity proxies are not
particularly well correlated with FB-δ15N (Fig. S3). Moreover,
because deep thermocline waters have a substantially lower N/P
ratio than the shallow thermocline waters (16), an increase in the
supply of deeper-held nutrients to the surface would have en-
couraged an increase in N2 fixation, which would have worked to
lower the δ15N of the sinking flux and of the shallow subsurface
nitrate. This increase in N2 fixation would have countered the
tendency for increased vertical mixing to raise the δ15N of the
nitrate supply and, in turn, FB-δ15N. Finally, if changes in vertical
mixing were the dominant driver of the δ15N changes, we would
expect synchronous changes in the sea surface temperature (SST)
and δ15N, which is not supported by our data (Figs. 3, 4, and 5A).
Similarly, it is observed that a planktonic foraminiferal index of
vertical mixing (39) changes early in the deglaciation and then

stabilizes, whereas FB-δ15N evolves through the deglaciation and
Holocene (Fig. 2) (40). As the effect of vertical exchange on ni-
trate δ15N would be essentially instantaneous (decadal at most),
this lag argues against SCS hydrographic conditions as the domi-
nant signal in FB-δ15N.
Nitrogen inputs from river and atmospheric sources are also

unlikely to explain the FB-δ15N variations. Clear signs of riverine
N input are confined to the inner shelf above 30 m, and our
preliminary data from two summer cruises show high δ15N values
for the shallow shelf nitrate (up to 12‰). Atmospheric N de-
position is low in δ15N relative to oceanic nitrate (41), so an
increase in deposition would have been required during inter-
glacials to explain the low FB-δ15N. However, the interglacial δ15N
impact, when neglecting the recent rise in anthropogenic N, is far
too low for its removal to have caused a 3‰ rise in FB-δ15N
during ice ages (42, 43).
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A changing rate of N2 fixation is the sole remaining mechanism
with the potential to explain the cycles in FB-δ15N at this site in the
SCS. We conclude that the δ15N of the shallow thermocline nitrate
was lowered less by N2 fixation during glacials, due to an ice age re-
duction in the rate of this process. The amplitude of the SCS δ15N
rise in the glacials is similar to that observed in the tropical western
North Atlantic (13, 14), where N2 fixation also has a strong imprint
on thermocline nitrate δ15N (20). The 3‰ amplitude of the glacial/
interglacial FB-δ15N change in the SCS is comparable to the largest
regional declines in ocean nitrate δ15N attributed to N2 fixation in
the modern ocean (44, 45); this suggests that the ice age decline in
N2 fixation rate was dramatic, most likely to less than half of the
modern rate based on a two end-member mixing calculation (Es-
timate for Glacial–Interglacial Changes in N2 Fixation Rate).

A question that arises is how FB-δ15N glacial−interglacial
variations of ∼3‰ could result when the modern nitrate δ15N
decline from ∼500 m depth into the shallow SCS thermocline is
only 1 to 2‰ (Fig. 1B). First, the Holocene does not represent
the minimum observed FB-δ15N, so shallow thermocline nitrate
δ15N is reconstructed to have been still lower during previous
interglacials. Second, the role of N2 fixation in lowering the δ15N
of subsurface nitrate is greater than indicated by the local ver-
tical gradient in nitrate δ15N alone, as low δ15N N from N2 fix-
ation spreads horizontally and vertically, as nitrate and sinking
particulate nitrogen (45). This latter point also reinforces the
arguments above against a hydrographic (e.g., vertical mixing)
explanation for the observed FB-δ15N changes.
At all nine glacial terminations covered by our FB-δ15N re-

cord, a reconstructed increase in N2 fixation in the SCS coincides
with decreases in planktonic and benthic δ18Oc, a rise in sea level
and thus an increase in shelf area (Fig. 4 and Figs. S4 and S5), a
rise in SST, and an apparent deglacial increase in water column
denitrification in the eastern tropical Pacific (Figs. 3 and 4). The
length of the SCS FB-δ15N record allows for the use of time
series analysis to identify the correlations that are most consis-
tent with a causal connection.
Variability in SST is highly coherent with that in FB-δ15N (Fig.

5A). However, FB-δ15N lags SST by more than 4 ky in the dominant
41- and 100-ky bands for the latter half of the record (Fig. 5A).
Because the physiological and biochemical response of N2 fixers to
SST would be effectively instantaneous, the lag argues against SST
as the driver of the greatest FB-δ15N variations. Moreover, based
on observed sensitivities (15), the reconstructed SCS SSTs fall into
the optimal range for N2 fixation, and a 3 °C cooling would be far
too small to explain the dramatic reduction in N2 fixation during
glacials. Dust fluxes are lowest when reconstructed N2 fixation is
highest, arguing against iron supply as the explanation for the
reconstructed N2 fixation changes (Fig. 4F). This lack of positive
correlation between N2 fixation and dust supply is consistent with
high iron availability in the SCS even during interglacials, both from
the margins and from atmospheric deposition.
There are three bulk sediment δ15N records from near water

column zones of suboxia and that are adequately long to compare
with our SCS FB-δ15N record (Figs. 4 C−E and 5B). These envi-
ronments are characterized by high export production and relatively
good preservation of sedimentary organic matter, such that the
potential of bulk sediment δ15N to robustly record the δ15N of N
export is greater than in most other ocean regions (46). Of these
records, only ODP Site 1012 (37) from the California margin shows
significant coherency (Figs. 4C and 5B). The anticorrelation of the
records might be taken to suggest that enhanced water column de-
nitrification in the eastern tropical North Pacific during interglacials
was responsible for coincident N2 fixation in the SCS. However, the
coherency is limited to periods near 100 ky, suggesting that observed
similarities in the records reflect independent but similarly timed
responses to glacial cycles.
The SCS FB-δ15N and δ18Oc records are similar in large-scale

structure (Figs. 3 B and C), suggesting a connection between N2
fixation and sea level. A stack of sea level records (47–49) shows
high coherency with the SCS FB-δ15N over a wide range of fre-
quencies (Fig. 5C; significant against red noise with 95% confi-
dence), as strong as the coherency between independent sea level
reconstructions (Figs. S6−S8). Thus, the reconstructed glacial/in-
terglacial changes in N2 fixation appear to require a mechanism that
involves ice volume and/or sea level change. The correlation of
markers of terrigenous input with FB-δ15N in MD972142, with
greater terrigenous material when FB-δ15N is high (29), provides
additional support for this interpretation (Fig. S3D). As no rela-
tively direct, low-lag connection between ice volume and N2 fixation
appears plausible for the SCS, the data argue for sea level as the
dominant driver of N2 fixation change.

SL stack / 15N O. universa

16

32

64

124

256

512
1000 200 300 400 500 600 700 800

Bulk 15N ODP 1012 / 15N O. universa

16

32

64

124

256

512

16

32

64

124

256

512

1000 200 300 400 500 600 700 800

1000 200 300 400 500 600

SST / 15N O. universa

700 800

Age (ka)

)yk(
d

oire
P

)yk(
d

oire
P

P
er

io
d

 (
ky

)

A

B

C

Fig. 5. Cross-wavelet coherence and phase relationship among records of N2

fixation, sea level, sea surface temperature, and water column denitrification.
Squared wavelet coherence between two time series was computed using the
methods of ref. 68. The 95% confidence level against red noise was calculated
using the Monte Carlo method and is shown as a thick contour that encloses
the significant sections. The light shading indicates the region possibly influ-
enced by edge effects. Black arrows indicate the phase relationship between
the two time series, with in-phase pointing right, FB-δ15N leading a given cli-
mate variable pointing down, and FB-δ15N lagging pointing up. The different
records have been interpolated to an evenly spaced time series of 2 ky before
the spectral analysis. (A) The SST record (29) from the same sediment core has
high coherency with, but leads, the FB-δ15N of O. universa by around 4 ky
during the last 400 ky at the dominant 41- and 100-ky bands, as indicated by
the direction of the arrows, which is inconsistent with a causal connection in
this case. (B) The bulk δ15N record from California margin (37) is coherent with
FB-δ15N in the SCS at the period near 100 ky. (C) The sea level record stack (47–
49) shows high coherency with FB-δ15N at a wide range of frequencies.
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The extensive continental shelf area of the tropical western
North Pacific adjacent to the SCS, the Sunda shelf in particular,
appears to be an important locus of benthic denitrification (8).
This shelf area was nearly completely lost during peak glacials
(Fig. 1A). The reduction in shelf area has been proposed to reduce
shelf sedimentary denitrification in the glacials (7), which, in turn,
would lead to higher N/P (less excess P) in the upper water col-
umn. This change would have discouraged N2 fixation in the SCS
and neighboring regions, explaining the remarkable coherency of
the sea level records and our SCS FB-δ15N record (Fig. 6).
The SCS FB-δ15N record thus provides the most direct evidence

to date for the long-hypothesized scenario in which sea level drives
glacial cycles in benthic N loss along the continental margins. Such a
mechanism implies that SCS N2 fixation responded to changes in
nearby shelf area, as changes in N loss on distant shelves should
have been compensated by N2 fixation in those regions. N2 fixation
compensation for N loss might be confounded by changes in iron
availability in other tropical/subtropical ocean regions. However, for
regions such as the SCS that are characterized by high iron supply,
local compensation for N loss changes is arguably to be expected.
Continental slopes are known to deposit substantial quantities

of margin-derived organic matter at their base (50), and the
resulting accumulation drives denitrification on the slope (31, 51,
52). It is possible that this process was accelerated during ice
ages and, in part, replaced the sedimentary denitrification on the
continental shelves. N loss on the slope may not lead to syn-
chronous changes in N2 fixation because the N deficit would
accumulate in deep water, not directly affecting the N/P of the
nutrient supply to the locally overlying surface ocean. However,
the funneling of organic matter into the deep ocean prevents the
upper ocean nutrient recycling and other processes that render N
loss so rapid on the shelves. Therefore, any increased N loss by
denitrification on the slope is unlikely to have substantially
compensated for the reduced N loss on the shallow margins.
N2 fixation slowed substantially during ice ages, as recon-

structed here for the western tropical Pacific and previously for
the North Atlantic, in both cases consistent with the response of
N2 fixation to excess P supply as the dominant driver of the
changes (13, 14). The correlation between SCS N2 fixation and
sea level provides data-based support for the hypothesis of re-
duced sedimentary denitrification during ice ages (7, 53, 54), and
bulk sediment δ15N records argue for reductions in water column
denitrification as well (5, 6). With these lower rates of both input
and loss, the residence time of fixed N in the ocean [currently
∼3 ky (55, 56)] would have become longer and thus less distinct
from the residence time of phosphorus [15 ky to 40 ky (57)],
although the latter may also have changed over glacial cycles.
Benthic N loss on the continental margins reflects the high flux of

organic matter to the coastal seabed (50–52), a consequence of both
the shallow continental shelf and the high productivity of the coastal
water column (Fig. 6). The high productivity is, in turn, supported by
the shelf, which traps sinking organic matter and quickly returns
nutrients to the sunlit surface ocean. Thus, the reduction in benthic
N loss during ice ages implies a net decline in the organic matter
supply to coastal ecosystems, especially those organisms that rely on
the benthos. In part because of their extraordinarily high productivity
and benthic activity, the modern continental shelves have tremen-
dous importance for seafloor fauna, fish, and marine mammals. The
reconstructed biogeochemical changes imply that these higher tro-
phic levels would have suffered a notable decline in food supply
during the low sea level stands of ice ages (Fig. 6), potentially
impacting the evolution and current characteristics of coastal species
and ecosystems (e.g., ref. 58).

Methods
FB-δ15N Analyses. The protocol follows and is modified from that of refs. 13 and
14. The individual foraminifera species (250- to 425-μm-size fraction, ∼5 mg per
sample) are picked manually and gently crushed under a dissecting microscope.

Samples are first sonicated for 5 min in an ultrasonic bath using 2% poly-
phosphate solution to remove clay particles. To remove metal coatings,
bicarbonate-buffered dithionite−citric acid solution is then added to each
sample, and the samples are placed in a water bath at 80 °C for 1 h. The final
cleaning step is oxidative: Basic potassium persulfate solution is added to each
sample, and the samples are autoclaved (at 121 °C) for 1 h. The cleaned samples
are rinsed in deionized water and dried overnight at 55 °C. This cleaning pro-
tocol typically preserves 60 to 75% of the initial foraminifera weight.

Cleaned foraminifera (∼3 mg to 4 mg per sample) are weighed into a
previously combusted glass vial and dissolved in 3N HCl. To convert the re-
leased organic N to nitrate, purified basic potassium persulfate oxidizing
solution is added to the vials, which are then autoclaved for 1 h on a slow-
vent setting. To lower the N blank associated with the oxidizing solution, the
potassium persulfate is recrystallized three times. At the time of processing,
0.8 g of NaOH and 0.5 g of potassium persulfate are dissolved in 100 mL of
deionized water. Organic standards are used to constrain the δ15N of the
persulfate reagent blank. Three different organic standards were used: US
Geological Survey (USGS) 40 (δ15N = −4.5‰ vs. air), USGS 41 (δ15N = 47.6‰
vs. air), and a laboratory standard made of a mixture of 6-aminocaproic acid

Fig. 6. Inferred glacial/interglacial changes along the SCS margin. (A) Dur-
ing interglacial high sea level stands, organic matter decomposition on the
shallow shelf promotes high coastal ocean productivity and rapid shelf de-
nitrification. The denitrification, by consuming fixed N, causes the shelf
water to have excess P. When this water is transported into the open SCS,
phytoplankton growth draws down its nutrients, and its excess P causes N to
become depleted before P. The availability of P in the absence of N enhances
N2 fixation, which is reflected in a lowering of thermocline nitrate δ15N and
thus lower FB-δ15N. (B) The sea level-driven loss of the shallow shelf during
glacials reduces productivity and sedimentary denitrification along the
margin. The reduction in sedimentary denitrification rate is compensated by
slower offshore N2 fixation, causing thermocline nitrate δ15N and FB-δ15N to
rise. Along the margin, the glacial reduction in shallow seafloor nutrient
recycling and thus phytoplankton production would impact the upper trophic
levels that thrive on the modern (interglacial) shelf. This mechanism, which
explains the observed coupled changes in sea level and N2 fixation in the SCS,
should also apply along other ocean margins.
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and glycine (δ15N = 5.4‰ vs. air). A minimum of 18 organic standards and
three to five blanks were analyzed per batch of samples.

To determine the N content of the samples, nitrate concentration is
measured in the oxidation solution after autoclaving. The nitrate analysis is
by reduction to nitric oxide using vanadium (III) followed by chem-
iluminescence detection (59). The blank is also quantified in this way. Con-
sistent with our previous findings, O. universa and G. ruber had an average
N content of 3 mmol to 4 mmol N per gram of cleaned calcite, yielding ni-
trate concentrations in the oxidation solutions of 10 μM to 20 μM, whereas
the nitrate concentration of the blanks ranged between 0.3 μM and 0.7 μM
(less than 5%, typically less than 2%, of the total N per sample).

The δ15N of the samples is determined using the denitrifier method in
conjunction with gas chromatography and isotope ratio mass spectrometry
(60, 61). The denitrifier method involves the transformation of dissolved
nitrate and nitrite into nitrous oxide gas (N2O) via a naturally occurring
denitrifying bacterial strain that lacks an active form of the enzyme N2O
reductase. Before adding the foraminifera samples to the bacteria, the
sample solution is acidified to pH 3 to 7. The denitrifier Pseudomonas
chlororaphis was used for this work. Normally, 5-nmol samples are added to
1.5 mL of bacterial concentrate after degassing of the bacteria. Along with
the samples, the organic standards as well as replicate analyses of nitrate
reference material International Atomic Energy Agency NO3 reference
(IAEA-N3) (δ15N = 4.7‰ vs. air) and a bacterial blank are also measured. The
IAEA-N3 standards are used to monitor the bacterial conversion and the
stability of the mass spectrometry, and the oxidation standards are used to
correct for the oxidation blanks. If possible, samples were oxidized in du-
plicate, and oxidized samples were also sometimes analyzed by the de-
nitrifier method in duplicate. The denitrifier method typically has a SD (1σ)
of less than 0.1‰ and is not reported here. The reported error is the SD
estimated from the means of separate oxidations of cleaned foraminiferal
material, which averaged 0.22‰ (57% were less than 0.2‰, and 93% were
less than 0.5‰).

The data reported in this work will be accessible at National Centers for
Environmental Information (NOAA) once the paper is published online.

The δ18O Analyses on Cibicidoides wuellerstorfi. Approximately 15 Cibicidoides
wuellerstorfi individuals were picked from each sample. The samples were
ultrasonicated first in 1 mL of deionized water for 3 s to 5 s, then in 0.2 mL of
methanol for 3 s to 5 s. The samples were rinsed with deionized water two to

three times and dried in an oven at 60 °C overnight. The cleaned forami-
nifera samples were crushed, and 35 mg to 80 mg weighed into 4.5-mL vials.
The δ18O were analyzed with a Thermo GasBench II coupled to a Thermo
Delta V Plus mass spectrometer at Eidgenössische Technische Hochschule
Zürich (62). The average of the SD of single δ18O measurements is ∼0.04%.

Nitrate Sampling and δ15N Analyses at the South East Asian Time-Series Station
and in the Open Western Pacific. The South East Asian Time-Series (SEATS)
station is located at 18°N and 116°E (Fig. 1A) in about 3,800 m of water. It
was sampled four times between August 2012 and December 2013 in ap-
proximately seasonal intervals aboard R/V Ocean Researcher I. Two casts
during August 2012 and eight casts from each of the other three cruises
were sampled for nitrate δ15N analyses. The western subtropical Pacific
transect is located along 23.5°N from 122.25°E to 126°E. Discrete water
samples were collected from five open ocean stations in 2013 July on R/V
Ocean Research V. All water samples were collected with General Oceanics
GO-FLO bottles bottles mounted onto a Rosette sampling assembly. From
each depth, seawater was collected unfiltered in a rinsed 60-mL high-density
polyethylene bottle and immediately frozen at −20 °C.

The concentration of nitrate plus nitritewas analyzed by reduction to nitric
oxide using vanadium (III) followed by chemiluminescence detection (59). The
δ15N of nitrate was determined using the denitrifier method, as described
above. We use two international nitrate isotope reference materials, IAEA-
N3 (δ15N = 4.7‰ vs. air) and USGS-34 (δ15N = −1.8‰ vs. air), to correct the
data. The analytical precision for δ15N was 0.08‰. The error bars in Fig. 1C
represent 1 SD of the nitrate δ15N analyzed at the same depth from the
different casts, which averaged 0.20‰.
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Estimate for Glacial–Interglacial Changes in N2 Fixation Rate
The deep thermocline nitrate in the SCS is transported from
the western Pacific Ocean primarily through Luzon Strait. In the
tropical latitudes of the western and central Pacific, nitrate in the
lower thermocline (300 m to 600m depth) has a δ15N between 7‰
and 8‰, with most of the nitrate between 7.0‰ and 7.5‰ (24,
32). Newly fixed N from N2 fixation, on the other hand, has a low
δ15N close to that of atmospheric N2 δ15N (−2‰ to 0‰ vs. air
N2) (69–71), and it is taken as the dominant mechanism that
lowers nitrate δ15N in the subsurface of the SCS and nearby re-
gions to values below 7‰ (22). The current shallow subsurface
nitrate δ15N at the northern SCS is 4.9‰ [average nitrate δ15N at
100 m depth from four cruises from 2012 to 2013 at SEATS) (Fig.
1C)]. Using a two end-member mixture of newly fixed N with a δ15N
of −1‰ and the deep thermocline nitrate with a δ15N of 7‰ in
the SCS [δ15NN2 fixation × FractionN2 fixation + δ15Nthermocline nitrate ×
(1 − FractionN2 fixation) = δ15Nsubsurface nitrate], we estimate that
about 26% of the nitrate at 100 m depth originates from N2 fixation
in the SCS and the neighboring western Pacific margin.
The δ15N of both G. ruber and O. universa measured in the

surface sediment is 4.9‰, the same as the 100-m-depth mini-
mum in nitrate δ15N (Fig. 1C). This nitrate-to-foraminifera
similarity is consistent with our previous findings from global
compilations that FB-δ15N is similar to the δ15N of the sub-
surface nitrate available for upward transport into the euphotic
zone. We thus use past changes in the FB-δ15N to reconstruct
past changes in the subsurface nitrate δ15N, and, in turn, changes
in N2 fixation rate. Alternative explanations for the FB-δ15N
changes involving circulation- or remote biogeochemistry-driven
changes in the δ15N of the interior nitrate supplied to the SCS
are discussed in Results and Discussion.
FB-δ15N varies between 4‰ and 7‰ from peak interglacials

to glacials. Using the average FB-δ15N of G. ruber between 21 ka
and 29 ka (∼6.0‰), we estimate that recently fixed N contributes

only about 13% of the shallow subsurface nitrate during the LGM.
If we assume that the higher FB-δ15N of the LGM is due to changes
in N2 fixation alone, then the LGM N2 fixation rate is only 48% of
its Holocene rate. In our previous study, this value is estimated to
be 27% (40); this is because we had assumed that the intermediate-
depth nitrate δ15N (∼6.2‰) in the SCS was not affected by N2
fixation. However, the intermediate-depth nitrate δ15N in the SCS is
lower than in the open western and central Pacific, suggesting that
the entire water column in the SCS is influenced by nitrate from the
remineralization of newly fixed N; this is to be expected given the
strong vertical mixing in the deep SCS (72). The minimum in-
terglacial FB-δ15N value of 4‰ suggests that newly fixed N can
contribute up to 38% of the subsurface nitrate. In summary, our
record indicates that the N2 fixation rate in the SCS varies by
threefold between ice ages and interglacials.

Phase Relationship Between FB-δ15N and Benthic Calcite δ18O
FB-δ15N and benthic calcite δ18O show high coherency through-
out the record. One possible exception involves the major glacial
terminations (such as that before the Holocene; Fig. 3C and Fig.
S8), during which a transient nitrate δ15N rise of ∼1‰ may occur
(40, 54). This δ15N rise would introduce an apparent lag in the
deglacial FB-δ15N decrease relative to whatever environmental
parameter is predominantly driving the glacial/interglacial
changes, potentially explaining the observed lag of FB-δ15N rela-
tive to sea level at the terminations.

Shelf Area and Sea Level in the SCS
The SCS hypsographic curve [using the ETOPO1 Ice Surface
global relief model (73)] suggests that the shallow shelf area and
sea level is close to linearly correlated within the upper 100 m
(Fig. S4). As a result, changes in sea level and shelf area would
have been almost synchronous, with little deviation from a lin-
early proportional relationship (Fig. S5).

40

30

20

10

0

N
it

ra
te

 c
o

n
ce

n
tr

at
io

n
 (

µ
m

o
l/L

)

2826242220
sigma-theta (kg/m3)

7.0

6.5

6.0

5.5

5.0

4.5

4.0

15
N

N
+N

 (
‰

 v
s.

ai
r)

403020100
Nitrate concentration (µmol/L)

 Western Pacific
 SEATS

1

10

100

1000

W
ater d

ep
th

 (m
)

 Western Pacific
 SEATS

(A) (B)

Fig. S1. Hydrographic evidence that the low nitrate δ15N in the shallow thermocline of the SCS derives from in situ remineralization of newly fixed N. (A) The
nutrient concentration above 500 m is more elevated than in the open western Pacific on any given isopycnal. (B) The shallow SCS (between 100 m and 500 m)
has a lower nitrate δ15N at a given nitrate concentration in comparison with the open western Pacific.
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Fig. S2. The benthic foraminifera calcite δ18O stratigraphy of MD972142. The age model of the core at MD972142 is reconstructed using correlation with LR04
benthic foraminifera oxygen isotope stack (74) and incorporates five published radiocarbon dates for the Holocene and Termination I (64). The benthic fo-
raminifera δ18O record from MD972142 was analyzed on C. wuellerstorfi.

8

7

6

5

4

3

FB
-

15
N

 (‰
 v

s.
 a

ir)

8007006005004003002001000
Age (ka)

8

7

6

5

4

3

FB
-

15
N

 (‰
 v

s.
 a

ir)

3.0
2.5
2.0
1.5
1.0
0.5
0.0

alkenone concentration
(µg/g)

8

7

6

5

4

3

FB
-

15
N

 (‰
 v

s.
 a

ir)

1.6

1.2

0.8

0.4

0.0

TO
C

 content (%
)

8

6

4

2

opal content (%
)

8

7

6

5

4

3

FB
-

15
N

 (‰
 v

s.
 a

ir)

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0 n-A

lkanes concentration
(µg/g)

(A)

(B)

(C)

(D)

Fig. S3. In MD972142, the FB-δ15N record in comparison with multiple productivity proxies [(A) opal content, (B) total organic carbon (TOC) content, and (C)
alkenone concentration] and (D) with the concentration of n-alkanes (29), a biomarker of terrestrial input.
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Fig. S4. The SCS hypsographic curve generated using the ETOPO1 Ice Surface global relief model (73).
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Fig. S5. Comparison of the FB-δ15N record with calculated ice volume-driven changes. Because of the nearly linear relationship between sea level and shelf
area in the SCS within the upper 100 m, changes in relative sea level (RSL) and shelf area are almost synchronous over the past glacial/interglacial cycles.
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Fig. S6. The FB-δ15N record in comparison with different sea level records. FB-δ15N is plotted with the five individual sea level records (A–E) that are part of the
sea level stack and that cover the last 800 ky (47, 48, 75–77).
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Fig. S7. Cross-wavelet coherence and phase relationship of the sea level record from ODP site 1123 (47) and other sea level records (48, 75, 76) that cover the
past 800 ky. Squared wavelet coherence between two time series was computed using the methods proposed by ref. 68. This analysis identifies regions of
significant (95% confidence) coherence and its relative phase in time−frequency space. The 95% confidence level against red noise was calculated using the
Monte Carlo method and is shown as a thick contour that encloses the significant sections. The light shading represents the cone of influence (COI), which ensures
that the edge effects are negligible beyond this point. Black arrows indicate the relative phase relationship between the two time series, with in-phase pointing
right, antiphase pointing left, ODP 1123 Sea Level (47) leading a given sea level record by 90° pointing up, and ODP 1123 Sea Level lagging by 90° pointing down.
The different records have been interpolated to an evenly spaced time series of 2 ky before the spectral analysis of the data. The results indicate that the coherency
of the SCS FB-δ15N record with (A) the sea level stack is as strong as the coherency among (B−D) the independent sea level reconstructions.
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Fig. S8. Cross-wavelet coherence and phase relationship of the FB-δ15N and benthic δ18O at MD972142. Squared wavelet coherence between two time series
was computed using the methods proposed by ref. 68. This analysis identifies regions of significant (95% confidence) coherence and its relative phase in time−
frequency space. The 95% confidence level against red noise was calculated using the Monte Carlo method and is shown as a thick contour that encloses the
significant sections. The light shading represents the COI, which ensures that the edge effects are negligible beyond this point. Black arrows indicate the
relative phase relationship between the two time series, with in-phase pointing right, antiphase pointing left, benthic δ18O leading FB-δ15N by 90° pointing up,
and benthic δ18O lagging by 90° pointing down. The different records have been interpolated to an evenly spaced time series of 2 ky before the spectral
analysis of the data. A lag of FB-δ15N relative to benthic foraminiferal δ18O is observed especially in the four most recent terminations, as indicated by the
direction of the arrows over the past 400 ky at the dominant 100-ky period.
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Fig. S9. The locations of the sediment cores in Fig. 2.

Ren et al. www.pnas.org/cgi/content/short/1701315114 6 of 6

www.pnas.org/cgi/content/short/1701315114

	PNAS-2017-Ren-1701315114
	pnas.201701315SI

